Jennifer A. Surtees, Ph.D. Dept. Biochemistry, Jacobs School of Medicine and Biomedical Sciences Co-Director of UB's Genome, Environment and Microbiome Community of Excellence University at Buffalo, Buffalo, NY 14203

jsurtees@buffalo.edu

HOW DOES THE IMMUNE SYSTEM WORK?

Graphics adapted from Scienceabc.com

ALL THANKS TO OUR IMMUNE SYSTEM

Graphics adapted from MedSimplified.com

INNATE IMMUNITY

Immunity we are born with Kill bacteria or virus in a non-specific way Cells either eat the germs or secrete chemicals to kills them

Graphics adapted from MedSimplified.com

INNATE IMMUNITY

Graphics adapted from MedSimplified.com

ADAPTIVE IMMUNITY

Immunity we acquire following infection (adapts to the infection)
Highly specific to the type of bacteria or virus causing infection
Recognize specific proteins on the surface of germs (antigens)

Kill infected cells

Produce Antibodies -Bind to the surface of virus/bacteria and blocks it -Help innate immune cells to find and eat them

Graphics adapted from MedSimplified.com

ADAPTIVE IMMUNITY (RETAIN MEMORY) – THE BASIS OF VACCINATION

1ST TIME EXPOSURE

Body produce B- and T-cell response But is usually slow as it is still adapting

Also retain memory of the virus/bacteria

The secondary (and tertiary and subsequent) immune response is: FASTER, GREATER and STRONGER

 When challenged again with same antigen, body mounts a fast and strong immune response

Graphics adapted from MedSimplified.com

PRACTICE MAKES PROGRESS

- Practicing is a great way to learn a new skill or reach a new goal
 - Learning an instrument
 - Running a set distance
 - \circ Scoring high marks on a test
 - $\circ \quad \text{Landing that job} \quad$
 - Practice makes perfect

VACCINATION IS PRACTICE FOR THE IMMUNE SYSTEM – WITHOUT GETTING SICK!

- Controlled exposure to an exogenous molecule to illicit a mild immune response
 - Molecule may be
 - Weakened/inert form of the pathogen
 - Protein expressed by the pathogen
 - Trains the immune system to more rapidly recognize the pathogen in the future

All vaccines work in the same general way – they present a target for the immune system, to "educate" the immune system to recognize a pathogen.

Many different "targets" can be used.

Vaccines against SARS-CoV-2 train your immune system to recognize the virus, or parts of it, to produce protective antibodies that prevent infection

Different approaches to display the spike protein for the immune system

mRNA vaccines (Pfizer and Moderna – 2 doses)

HERD IMMUNITY

Indirect protection of population

- If enough people are immune
- Reduces chance others will get infected
- For COVID-19, estimated:
 - 70-90% of population will need to be vaccinated
 - NY state is at 1% fully vaccinated

For COVID-19, herd immunity can protect:

- Kids
- Vaccinated, but vaccine didn't work
- Others who didn't get vaccine

Healthy, Immunized

Unvaccinated population

Partially vaccinated population

With widespread immunization, HERD IMMUNITY protects the non-immune!

CONCERNS ABOUT VACCINES AGAINST SARS-COV-2

- mRNA will integrate into my DNA
- There are fertility concerns with the vaccines
- The side effects aren't worth it
- The vaccines won't work in older people
- The vaccines were rushed how is it possible to have had this happen so quickly?
- The variants we are hearing about will make the vaccines moot

POSSIBLE WITH SIGNIFICANT FUNDS TO ALLOW PARALLEL TRACKS OF Science and production Backed by decades of basic science research

Date	Milestone		
Dec 1	Covid-19 illness documented (unpublicized Nov 17 th)		
Jan 10	SARS-CoV-2 virus sequenced		
Jan 15	NIH designs mRNA vaccine in collaboration with Moderna		
Mar 16	Moderna Phase 112 trial begins		
May 2	Pfizer/BioNTech Phase 112 trial begins		
July 14	Moderna Phase 112 trial published in NEJM		
July 27, 28	Moderna and Pfizer/BioNTech Phase 3 trial begins		
Aug 12	Pfizer/BioNTech Phase 112 published in Nature		
October 22,27	Enrollment in both Phase 3 trials complete; >74,000 participants		
Nov 9	Pfizer/BioNTech announces interim analysis efficacy > 90%		
Nov 16	Moderna announces interim analysis efficacy 94.5%		
Nov 18	Pfizer/BioNTech announces 95% efficacy as final result		
Nov 20	1 st EUA submitted by Pfizer/BioNTech		
Nov 27	Distribution of vaccine by UAL charter flights throughout US		
Dec 10	FDA External review of Pfizer/BioNTech EUA		
Dec 11	Phase 1a Vaccination begins for health care professionals*		

*Provisional on positive external review

HOW THE KNOWN VARIANTS OF CONCERN AFFECT COVID-19 AND VACCINES

	B.1.1.7	B.1.351	P.1
Alternate name	501Y.V1	501Y.V2	501Y.V3
Country identified	United Kingdom	South Africa	Brazil
Mutations	23	21	17
Spike mutations	8	9	10
Key RBD, spike mutations beyond N501Y in all	E69/70 deletion, P681H 144Y deletion, A570D	E484K, K417N, orf1b deletion	E484K, K417T, orf1b deletion
Other mutations, including N-terminal	T7161, S982A, D1118H	L18F, D80A, D215G, ∆242-244, R264I, A701V	L18F, T20N, P26S, D138Y, R190S, H655Y, T10271
Transmissibility Δ	>50% increased	No	Not established
Lethality Δ	Not resolved	?	?
Immune evasion	Unclear	Yes	Yes, less than B.1.351
Vaccine efficacy (preserved vs severe infections in all so far)	Modest reduction ~10% point decline in 2 trials (Novavax, AZ)	Yes, reduced in 2 (J&J, Novavax ~20-30% point decline. No efficacy v mild infections w/AZ	Preserved in J&J trial
Countries reported	94	48	25
US States reported	46	17	5